24 research outputs found

    Small Extended Formulation for Knapsack Cover Inequalities from Monotone Circuits

    Full text link
    Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear programming (LP) relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. In this paper we address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. For the min-knapsack cover problem, our main result can be stated formally as follows: for any Δ>0\varepsilon >0, there is a (1/Δ)O(1)nO(log⁥n)(1/\varepsilon)^{O(1)}n^{O(\log n)}-size LP relaxation with an integrality gap of at most 2+Δ2+\varepsilon, where nn is the number of items. Prior to this work, there was no known relaxation of subexponential size with a constant upper bound on the integrality gap. Our construction is inspired by a connection between extended formulations and monotone circuit complexity via Karchmer-Wigderson games. In particular, our LP is based on O(log⁥2n)O(\log^2 n)-depth monotone circuits with fan-in~22 for evaluating weighted threshold functions with nn inputs, as constructed by Beimel and Weinreb. We believe that a further understanding of this connection may lead to more positive results complementing the numerous lower bounds recently proved for extended formulations.Comment: 21 page

    Strengths and Limitations of Linear Programming Relaxations

    Get PDF
    Many of the currently best-known approximation algorithms for NP-hard optimization problems are based on Linear Programming (LP) and Semi-definite Programming (SDP) relaxations. Given its power, this class of algorithms seems to contain the most favourable candidates for outperforming the current state-of-the-art approximation guarantees for NP-hard problems, for which there still exists a gap between the inapproximability results and the approximation guarantees that we know how to achieve in polynomial time. In this thesis, we address both the power and the limitations of these relaxations, as well as the connection between the shortcomings of these relaxations and the inapproximability of the underlying problem. In the first part, we study the limitations of LP relaxations of well-known graph problems such as the Vertex Cover problem and the Independent Set problem. We prove that any small LP relaxation for the aforementioned problems, cannot have an integrality gap strictly better than 22 and ω(1)\omega(1), respectively. Furthermore, our lower bound for the Independent Set problem also holds for any SDP relaxation. Prior to our work, it was only known that such LP relaxations cannot have an integrality gap better than 1.51.5 for the Vertex Cover Problem, and better than 22 for the Independent Set problem. In the second part, we study the so-called knapsack cover inequalities that are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield LP relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. We address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. In the last part, we show a close connection between structural hardness for k-partite graphs and tight inapproximability results for scheduling problems with precedence constraints. This connection is inspired by a family of integrality gap instances of a certain LP relaxation. Assuming the hardness of an optimization problem on k-partite graphs, we obtain a hardness of 2−Δ2-\varepsilon for the problem of minimizing the makespan for scheduling with preemption on identical parallel machines, and a super constant inapproximability for the problem of scheduling on related parallel machines. Prior to this result, it was only known that the first problem does not admit a PTAS, and the second problem is NP-hard to approximate within a factor strictly better than 2, assuming the Unique Games Conjecture

    CUSTOMERS LOYALTY: DOES VALUE CO-CREATION BECOME INDISPENSABLE FOR UNIVERSITIES?

    Get PDF
    This paper investigates the direct and indirect relationships between customers` participation in value co-creation activities (CPVCA) and their loyalty. Quantitative research approach is adopted, while the population consists of all the Lebanese private universities` students. A questionnaire was used to collect data from 403 students, nominated according to convenience sampling technique. The study proposed scale validity and the relationships between variables were examined depending on PLS-SEM. The findings reveal a direct significant relationship between CPVCA and customers` loyalty; in addition, to indirect relationship, through the partial mediating role for customers` satisfaction and relationship strength. Research implications and limitations are presented

    An Efficient Streaming Algorithm for the Submodular Cover Problem

    Get PDF
    We initiate the study of the classical Submodular Cover (SC) problem in the data streaming model which we refer to as the Streaming Submodular Cover (SSC). We show that any single pass streaming algorithm using sublinear memory in the size of the stream will fail to provide any non-trivial approximation guarantees for SSC. Hence, we consider a relaxed version of SSC, where we only seek to find a partial cover. We design the first Efficient bicriteria Submodular Cover Streaming (ESC-Streaming) algorithm for this problem, and provide theoretical guarantees for its performance supported by numerical evidence. Our algorithm finds solutions that are competitive with the near-optimal offline greedy algorithm despite requiring only a single pass over the data stream. In our numerical experiments, we evaluate the performance of ESC-Streaming on active set selection and large-scale graph cover problems.Comment: To appear in NIPS'1

    Anterior Cruciate Ligament Reconstruction Does Not Impact Career Earnings After Return to Play in National Basketball Association Athletes

    Get PDF
    PURPOSE: To quantify the financial impact of an anterior cruciate ligament (ACL) injury on the remaining career earnings of National Basketball Association (NBA) players. METHODS: We performed a retrospective review of all NBA players who had an ACL rupture between 2000 and 2019. Players were matched to healthy controls by age, position, body mass index, and player efficiency rating at the time of injury (index year). Player information collected included demographic information, position, team role, draft pick, date of injury, contract length, and earnings during the 3 years before and 7 years after the index year, as well as new contract length and earnings after injury. RESULTS: A total of 12 players (22%) did not return to play (RTP). No statistically significant difference in annual earnings was present at any time point between cohorts. When we examined the mean difference in earnings between the first 3 post-index seasons and the 3 pre-index seasons, both the ACL and control cohorts showed increased salaries as players\u27 careers progressed, without a significant difference in earnings. When comparing cohorts, we found no significant difference in the length and earnings of contracts during the index year. Furthermore, there was no significant difference in the length or earnings of the first new contract signed after the index year between cohorts. Additionally, NBA players who were able to RTP after ACL reconstruction were more likely to experience increased earnings if they had greater experience and performance prior to their injury (P \u3c .01). CONCLUSIONS: Our study found that NBA players did not experience diminished earnings after RTP from an ACL reconstruction when compared with matched controls. Furthermore, no differences were seen in lengths of new contracts or in contract earnings between cohorts. Players with greater experience and performance prior to injury were more likely to have increased earnings after ACL reconstruction. LEVEL OF EVIDENCE: Level III, retrospective case-control study

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Small extended formulation for knapsack cover inequalities from monotone circuits

    No full text
    Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear programming (LP) relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. In this paper we address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. For the min-knapsack cover problem, our main result can be stated formally as follows: for any Δ > 0, there is a (1/Δ) O(1) n O(logn) -size LP relaxation with an integrality gap of at most 2 + Δ, where n is the number of items. Previously, there was no known relaxation of subexponential size with a constant upper bound on the integrality gap. Our techniques are also sufficiently versatile to give analogous results for the closely related flow cover inequalities that are used to strengthen relaxations for scheduling and facility location problems.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore